首页> 外文OA文献 >Fault Detection and Isolation for a Supermarket Refrigeration System - Part One:Kalman-Filter-Based Methods
【2h】

Fault Detection and Isolation for a Supermarket Refrigeration System - Part One:Kalman-Filter-Based Methods

机译:超市制冷系统的故障检测与隔离 - 第一部分:基于卡尔曼滤波的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario, namely freeze-over/dirty built-up, is considered for one heat transfer coefficient between the inside air and the evaporator surface. For fault detection purpose, the fault residual is generated through a KF and then evaluated through CUSUM method. All fault scenarios can be detected clearly. For fault isolation purpose, a bank of KFs arranged by splitting measurements is constructed for sensor fault isolation, while the Multi-Model Adaptive Estimation (MMAE) method is employed to handle parametric fault isolation. All these approaches are extended and checked by using Extended KF technique afterwards. The test results show that the EKF-based FDI method generally performances better and faster than the KF-based method does. However, both methods can not handle the isolation between sensor faults and parametric fault.
机译:探索了使用卡尔曼滤波器(KF)技术对超市制冷系统进行故障检测和隔离(FDI)。对于两个温度传感器,考虑了四种类型的传感器故障场景,即漂移,偏移,冻结和硬着陆;对于一种传热系数,考虑了一种类型的参数故障场景,即冻结/脏物积聚。在内部空气和蒸发器表面之间。为了进行故障检测,通过KF生成故障残差,然后通过CUSUM方法进行评估。可以清楚地检测所有故障情况。出于故障隔离的目的,构造了通过拆分测量排列的一组KF来进行传感器故障隔离,而采用多模型自适应估计(MMAE)方法来处理参数故障隔离。所有这些方法随后都通过扩展KF技术进行了扩展和检查。测试结果表明,基于EKF的FDI方法通常比基于KF的方法性能更好,更快。但是,这两种方法都无法处理传感器故障和参数故障之间的隔离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号